Neutral Beam heating progress on LTX-β

W. Capecchi, J. Anderson, UW Madison S. Banerjee, R. Bell, D. Boyle, A. Maan, R. Majeski, PPPL D. Elliott, ORNL

Neutral beam important for studies on LTX-β

LTX- β provides testbed for study of energetic particles (EPs) in low-recycling boundary plasmas

Fueling essential for plasma sustainment during lowrecycling phase (no gas puffing)

[Elliott D. et al 2020 IEEE Trans. Plasma Sci. 48 1382-7]

Auxiliary heating probes energy scaling in low-recycling plasmas previously observed to exceed ITER98P(y, 1) ELMy H-mode scaling by factor of 3

[Kaita R. et al 2007 Phys. Plasmas 14 056111]

Lithium coated first wall via evaporation led to observation of flat T_e profiles

[D Boyle et al., PRL 119, 015001 (2017)]

Lithium Tokamak Experiment Beta

R=0.4 m; a=0.25 m

 $I_p \sim 100 - 150(?) \text{ kA}$

 $|B| \sim 0.3 T$

 $T_e(0) \sim 200-300 \text{ eV}$

 $n_e \sim 5x10^{13} \text{ cm}^{-3}$

Pulse length ~ 50 ms

Outline

- Prompt loss in low current plasmas & Modeling of beam coupling dependencies
- Experiments at higher current (good confinement) plasmas
 - No evidence of beam heating/deposition
- Beam improvements/optimization
 - New gas valves, realignment, fueling optimization, performance checks
- Evidence of beam in plasma signals
 - Fast ion physics, density threshold

(near) total prompt loss in < 100 kA plasmas

- NBI installed 2019, plasmas limited to < 100 kA
- Ions drift vertically to impact vessel boundary typically within first poloidal transit
- Loss drives counter-NBI torque [Hughes P.E. et al 2021 PPCF (2021)]

NBI Parameter	Specification
Beam energy	20 keV
Beam power	700 kW
Pulse length	5-7 ms
Composition	100% H

Modeling shows good coupling possible in LTX-B

- TRANSP/NUBEAM, CONBEAM (orbit topologies), and POET (3d orbits) give comprehensive understanding of beam parameter space
 - Good confined passing orbits (non-adiabatic effects small)
 - Low- vs high-field side coupling
 - Parameter dependence

Well confined orbits for co- (red) and counterinjected (blue) beam ions

Modeling shows good coupling possible in LTX-B

- TRANSP/NUBEAM, CONBEAM (orbit topologies), and POET (3d orbits) give comprehensive understanding of beam parameter space
 - Good confined passing orbits (non-adiabatic effects small)
 - Low- vs high-field side coupling
 - Parameter dependence

Modeling shows good coupling possible in LTX-B

- TRANSP/NUBEAM, CONBEAM (orbit topologies), and POET (3d orbits) give comprehensive understanding of beam parameter space
 - Good confined passing orbits (non-adiabatic effects small)
 - Low- vs high-field side coupling
 - Parameter dependence

[W. Capecchi et al 2021 Nucl. Fusion 61 126014]

Modeling shows good coupling possible in LTX-β

- TRANSP/NUBEAM, CONBEAM (orbit topologies), and POET (3d orbits) give comprehensive understanding of beam parameter space
 - Good confined passing orbits (non-adiabatic effects small)
 - Low- vs high-field side coupling
 - Parameter dependence

Good coupling >100kA, >1e19m^-3

Initially no evidence of beam in plasma

~July 2021 achieved 125 kA plasmas

Sought beam heating in high density discharges

Tried both low beam energy (good coupling) and high (worse coupling,

higher power)

Initially no evidence of beam in plasma

- ~July 2021 achieved 125 kA plasmas
- Sought beam heating in high density discharges
- No change observed in density, Thomson, stored energy, etc

What's happening to the beam?

- What's happening to the beam before it enters vessel?
 - Investigation into beam performance led to improvements:
 - Improved gas dynamics in source/neutralizer with new valves/orifices
 - Visual inspection of grid/source
 - Neutralization optimized
 - Beam source aligned with neutralizer
- What's happening to beam after it enters vessel?
 - Plasma-side effects (MHD, 3D fields, etc) ongoing

Neutral Beam troubleshooting

- Fixed thermocouples on calorimeter in beam neutralizer tank
- Bypassed Russian circuitry digitized directly
- New valves
 - More closely recreate original (designed) gas dynamics in source/neutralizer
 - New operational space- needs optimization (ongoing)

Thermocouple data gives multiple paths to improvement

- Temperature traces from thermocouples allowed measure of beam power delivered to calorimete
- Comparison to predicted temperature rise

$$\Delta T_{pred} = \frac{\int I_{nbi} E_{nbi} dt}{c_{ps} m_c}$$

- This comparison revealed we were not equilibrating in neutralizer
- Increased bottle pressure led to quick doubling of power onto calorimeter
- Further improvements have reached
 ~60% total beam power onto calorimeter

- Asymmetry in thermocouples suggests misalignment from source to neutralizer
- Spare source used to help center calorimeter in neutralizer
- Fast camera- good grid usage, no problems, source low (unfixable)

- Asymmetry in thermocouples suggests misalignment from source to neutralizer
- Spare source used to help center calorimeter in neutralizer
- Fast camera- good grid usage, no problems, source low (unfixable)

- Beam centered on calorimeter
 - Recovered original performance of beam

- Beam centered on calorimeter
 - Recovered original performance of beam
 - Edge/Core ratio gives beam width estimate- ~7.5cm FWHM at optimal perveance ~ 15e-6

Beam into calorimeter

Beam observed in plasma signals(!)

50

Radius [cm]

Radius [cm]

Radius [cm]

(credit Anurag Maan)

Time [sec]

MHD appears related to beam coupling

- Tearing mode (2/1) observed for $\langle n_e \rangle > 10^{19} m^{-3}$
- No beam-induced density rise when MHD present
- Initial high plasma current beam injection was high density to encourage beam coupling
- Now investigating relationship between beam and modes
- Note sacrifice running at low density- ~50% shinethrough

(credit Santanu Banerjee)

NPA to diagnose fast ion energy

- TRANSP suggests good confined population
 - Investigate mode interaction!
- Slowing time on order of beam pulse
 - Fully developed near end of pulse, plans to extend beam pulse
- Modeling of NPA (background neutral density) ongoing

Summary

- Modeling predicted good coupling >100 kA, >1e19m^-3
 - Nothing observed
- Deep dive into beam performance
 - Upgraded beam valves, optimized operation (more work to be done here)
 - Good understanding and confidence in beam behavior
- Preliminary evidence of beam coupling
 - Lower density required for coupling (avoid MHD)
 - Much to explore here- beam dependences on mode, orbit characteristics, resonances
- NPA being retrieved for diagnosing fast ion energy spectrum

Thank you!

The low recycling regime in LTX-β

- Atypical of most tokamak plasma conditions, LTX has achieved a low recycling boundary resulting in a flat electron temperature profile [D. Boyle 2017]
- NBI installed 2019: 20keV, 35A
- Good NBI coupling is essential
 - NBI replaces (edge) gas puffing to sustain plasma
 - Study high energy particle dynamics and energy confinement scaling in low R plasmas
 - NBI driven instabilities? Shear stabilization?

Initial NBI operation revealed near total prompt loss

- Ions drift vertically to impact vessel boundary typically within first poloidal transit
- Loss drives counter-NBI torque [Hughes P.E. et al 2021 PPCF (2021)]

LTX-β

LTX-β

Lithium coverage of >90% PFC

